Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics.

Mutation research

PubMedID: 16051281

Ahn NS, Hu H, Park JS, Park JS, Kim JS, An S, Kong G, Aruoma OI, Lee YS, Kang KS. Molecular mechanisms of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced inverted U-shaped dose responsiveness in anchorage independent growth and cell proliferation of human breast epithelial cells with stem cell characteristics. Mutat Res. 2005;579(1-2):189-99.
Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a variety of carcinogenic and noncarcinogenic effects in experimental animals, its role in human carcinogenicity remain controversial. A simian virus 40-immortalized cell line from normal human breast epithelial cells with stem cells and luminal characteristics (M13SV1) was used to study whether TCDD can induce AIG positive colony formation and cause increased cell numbers in a inverted U-shaped dose-response manner. TCDD activated Akt, ERK2, and increased the expression of CYP1A1, PAI-2, IL-lb mRNA, and ERK2 protein levels. TCDD was able to increased phosphorylation and expression of ERK2 in same dose-response manner as AIG positive colony formation. Thus, TCDD induced tumorigenicity in M13SV1, possibly through the phosphorylation of ERK2 and/or Akt. Further, cDNA microarray with 7448 sequence-verified clones was used to profile various gene expression patterns after treatment of TCDD. Three clear patterns could be delineated: genes that were dose-dependently up-regulated, genes expressed in either U-shape and/or inverted U-shape. The fact that these genes are intrinsically related to breast epithelial cell proliferation and survival clearly suggests that they may be involved in the TCDD-induced breast tumorigenesis.