Physical and chemical characterization of beryllium particles from several workplaces in Québec, Canada--part A: determining methods for the analysis of low levels of beryllium.

Journal of toxicology and environmental health. Part A

PubMedID: 16207636

Rouleau M, Dion C, Plamondon P, Kennedy G, L'Espérance G, Zayed J. Physical and chemical characterization of beryllium particles from several workplaces in Québec, Canada--part A: determining methods for the analysis of low levels of beryllium. J Toxicol Environ Health Part A. 2005;68(21):1889-905.
Chemical and physical characterizations of beryllium (Be) particles found in settled dust samples from four industries based in Québec were attempted using a variety of analytical methods. Bulk particle chemistry was determined using inductively coupled plasma-mass spectrometry (ICP-MS), graphite furnace atomic absorption spectrometry (GFAAS), and instrumental neutron activation analysis (INAA). Time-of-flight secondary-ion mass spectrometry (TOF-SIMS), transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction (XRD), electron energy loss spectrometry (EELS), and Auger microscopy were used to characterize physicochemical properties of particles. These analyses were deemed important based on the hypotheses that (1) different chemical forms of Be do not present the same risks, and (2) different morphologies lead to different risks. Standards were used to prove the adequacy of XRD, EELS, and Auger microscopy prior to the analyses of industrial samples. However, low concentrations of Be in samples were a limiting factor for most methods; few detected Be in industrial samples. Only ICP-MS, GFAAS, and TOF-SIMS were able to detect Be in industrial samples analyzed in this study. Characterization of settled dust samples showed high number of Be particles, even for Be concentrations below 100 ppm. Furthermore, Be seems to be present as fine particles of Be metal, possibly mechanically agglomerated or aggregated to larger particles or compounds such as cryolite. Other major elements detected with INAA present in the samples were limited to Na, Al, Ca, and F. It was concluded that TOF-SIMS is a valid method for characterizing particles containing approximately 0.01% Be.