In vitro and in vivo investigation of a novel monoclonal antibody to plasma cells (W5 mAb).


PubMedID: 14962296

Harper D, Gollackner B, Xu Y, Calderhead D, Ryan D, Li W, Cheng J, Wu C, Moran K, Latinne D, Bazin H, White-Scharf ME, Cooper DK, Awwad M, Chang J. In vitro and in vivo investigation of a novel monoclonal antibody to plasma cells (W5 mAb). Xenotransplantation. 2004;11(1):78-90.
Natural antibodies (Abs), predominantly anti-Gal alpha 1-3Gal (Gal) Abs, in non-human primates and human beings present a major hurdle to successful pig-to-primate xenotransplantation. Attempts to inhibit anti-Gal Ab production in naïve baboons using non-specific immunosuppressive or B cell-specific reagents have failed. A new rat monoclonal antibody (W5 mAb) has been generated, which binds to all B cells, including memory cells, and to the majority of plasma cells, but not to T cells. It has been tested in vitro and in vivo. By immunoprecipitation, W5 mAb bound a human leukocyte antigen class II (HLA-DR) determinant. Sorting splenic or bone marrow W5+ cells resulted in a highly enriched anti-Gal Ab and total immunoglobulin (Ig)-secretory population. In vivo studies in baboons demonstrated that W5 mAb was safe but, despite the concomitant administration of an anti-CD154 mAb to inhibit sensitization, anti-rat Abs were detected within 10 days and inhibited the effect of the W5 mAb. High levels of W5 mAb were able to completely deplete B cells in the blood, but not in lymphoid tissues. Enzyme-linked spot-forming assay (ELISPOT) demonstrated that only 50 to 60% of secreting cells (SC) were depleted in the bone marrow. No reduction in the serum levels of anti-Gal Ab was observed. W5 mAb did not cause complete inhibition of anti-Gal Ab production, probably as a result of its inability to completely deplete B and plasma cells from all lymphoid compartments.