Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data.

Environmental science & technology

PubMedID: 15112811

Jose SC, Cirpka OA. Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data. Environ Sci Technol. 2004;38(7):2089-96.
Numerical and theoretical studies have indicated that pore-scale mixing can be the limiting process for reactions among dissolved compounds in porous media. It has been claimed that multicomponent reactions in porous media could be accurately estimated using mixing coefficients obtained from point-like measurements of conservative tracer concentrations. In this study, we verify these concepts experimentally by tracer tests in a homogeneously packed saturated sand column. Fiber-optic fluorometry was applied to detect point-related concentrations of fluorescein, which was used as both the conservative and the reactive tracer. In the reactive tracer experiment, an acidic solution containing the tracer was displaced by an alkaline solution without tracer. Since the fluorescence of fluorescein is quenched at low pH, the fluorescence intensity measured in the reactive breakthrough curve indicated the mixing of the two solutions. The measured reactive breakthrough curves were compared to predictions based on the conservative breakthrough curves. Predictions and measurements agreed well. Our results imply that incomplete mixing on the pore scale is of minor significance for field-scale applications. On this scale, however, even weak sorption might influence mixing significantly.