ESR investigation of the oxidative damage in lungs caused by asbestos and air pollution particles.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy

PubMedID: 15134737

Kadiiska MB, Ghio AJ, Mason RP. ESR investigation of the oxidative damage in lungs caused by asbestos and air pollution particles. Spectrochim Acta A Mol Biomol Spectrosc. 2004;60(6):1371-7.
Exposure to asbestos and air pollution particles can be associated with increased human morbidity and mortality. However, the molecular mechanism of lung injuries remains unknown. It has been postulated that the in vivo toxicity results from the catalysis of free radical generation. Using electron spin resonance (ESR) in conjunction with the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) we previously investigated in vivo free radical production by rats treated with intratracheal instillation of asbestos (crocidolite fibers) and an emission source air pollution particle (oil fly ash). In this report we compare the effect of two different exposures on the type of free radicals they induce in in vivo animal model. Twenty-four hours after the exposure, ESR spectroscopy of the chloroform extract from lungs of animals exposed to either asbestos or oil fly ash gave a spectrum consistent with a carbon-centered radical adduct (aN = 15.01 G and aH = 2.46 G). To test whether free radical formation occurred in vivo and not in vitro, a number of control experiments were performed. Combinations (both individually and together) of asbestos or oil fly ash and 4-POBN were added to lung homogenate of unexposed rats prior to chloroform extraction. No detectable ESR signal resulted. To exclude the possibility of ex vivo free radical generation, asbestos or oil fly ash was added to lung homogenate of an animal treated with 4-POBN. Also, 4-POBN was added to lung homogenate from rats instilled with asbestos or oil fly ash. Neither system produced radical adducts, indicating that the ESR signal detected in the lung extracts of the treated animals must be produced in vivo and not ex vivo or in vitro. In conclusion, ESR analysis of lung tissue demonstrated that both exposures produce lipid-derived radical metabolites despite their different composition and structure. Analogously, both exposures provide evidence of in vivo enhanced lipid peroxidation. Furthermore, it is concluded that without the presence of a spin-trapping agent, no free radical metabolites could be detected directly by ESR in either exposure.