Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene.

Environmental science & technology

PubMedID: 12387402

Reisen F, Arey J. Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene. Environ Sci Technol. 2002;36(20):4302-11.
Acenaphthene and acenaphthylene are polycyclic aromatic hydrocarbons (PAHs) emitted into the atmosphere from a variety of incomplete combustion sources such as diesel exhaust. Both PAHs are present in the gas phase under typical atmospheric conditions and therefore can undergo atmospheric gas-phase reactions with the hydroxyl (OH) radical and for acenaphthylene with ozone. Using a relative rate method, rate constants have been measured at 296 +/- 2 K for the OH radical reactions with acenaphthene and acenaphthylene of (in units of 10(-11) cm3 molecule(-1) s(-1)) 8.0 +/- 0.4 and 12.4 +/- 0.7, respectively, and for the O3 reaction with acenaphthylene of (1.6 +/- 0.1) x 10(-16) cm3 molecule(-1) s(-1). The products of the gas-phase reactions of acenaphthene and acenaphthylene and their fully deuterated analogues have been investigated using in situ atmospheric pressure ionization tandem mass spectrometry (API-MS) and gas chromatography-mass spectrometry (GC-MS). The major products identified from the OH radical-initiated reaction of acenaphthene and acenaphthylene were a 10 carbon ring-opened product and a dialdehyde, respectively. The major product observed from the API-MS analysis of the O3 reaction with acenaphthylene was a secondary ozonide, which was not observed by GC-MS.